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We revisit the problem of Brownian diffusion with drift in order to study finite-size effects in the geometric
Galton-Watson branching process. This is possible because of an exact mapping between one-dimensional random
walks and geometric branching processes, known as the Harris walk. In this way, first-passage times of Brownian
particles are equivalent to sizes of trees in the branching process (up to a factor of proportionality). Brownian
particles that reach a distant reflecting boundary correspond to percolating trees, and those that do not correspond
to nonpercolating trees. In fact, both systems display a second-order phase transition between “conducting” and
“insulating” phases, controlled by the drift velocity in the Brownian system. In the limit of large system size,
we obtain exact expressions for the Laplace transforms of the probability distributions and their first and second
moments. These quantities are also shown to obey finite-size scaling laws.
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I. INTRODUCTION

Random walks and rooted trees are important models in
probability theory and statistical physics [1]. Random walks
[2–4] provide a microscopic model for diffusion processes [5],
and rooted trees are the geometric representation of branching
processes [6,7]. The Galton-Watson process, which is the
simplest branching process and is at the heart of self-organized-
critical behavior [8,9], is essentially the same as mean-field
percolation [10,11] when the offspring distribution of the
former is binomial. Percolation, meanwhile, is one of the
simplest examples of a second-order phase transition [12–14].
Moreover, characteristics of phase transitions also show up in
bifurcations in low-dimensional dynamical systems [15]. An
exact, purely geometric mapping between walks and rooted
trees was presented in Ref. [1], thereby connecting results
from random walks to branching processes and beyond [16].
Figure 1 offers a scheme for these relations. Note that the
distinction between percolating and nonpercolating clusters is
of great relevance and refers to the distinction between events
that might or might not connect two boundaries, spanning
or not an entire system, respectively [10,11]. Examples are
electrical conductivity in disordered media, avalanches in a
sandpile, or filtration in porous media. As we will discuss, the
statistical properties of percolating and nonpercolating clusters
are very different and can explain bumps (or kinks) previously
observed in some particular models [11,17,18].

The mapping between walks and trees [1], known as the
Harris walk, implies that a realization of a finite-size geometric
Galton-Watson branching process with no more than L gen-
erations corresponds (exactly) to a random walker confined

between absorbing and reflecting boundaries (at X = 0 and
X = L, respectively). Recently, Font-Clos and Moloney [16]
applied this mapping to derive the distribution of the size of the
percolating clusters in a finite Bethe lattice by using the first-
passage time to the origin of a Brownian particle conditioned
to first reach X = L. In the critical case (unbiased diffusion), a
Kolmogorov-Smirnov distribution is obtained (as in Ref. [19]).
In the subcritical case (diffusion with negative drift) these
authors find that the size of the percolating cluster tends
to a Gaussian distribution, whereas in the supercritical case
(diffusion with positive drift), an exponential-like distribution
is reported, asymptotically.

In this work we follow the approach of Ref. [16] and use the
first-passage time in a diffusion process to calculate the size
distribution of both percolating and nonpercolating clusters in
a geometric Galton-Watson process with a finite number of
generations. As we will explain, the size distribution, f (S),
is a mixture of both the size distribution of nonpercolating
clusters, fint(S), and the size distribution of percolating clus-
ters, fperc(S), i.e., f (S) = (1 − C�)fint(S) + C�fperc(S), with
the probability C� governing the contribution of each of the
two cases. Equivalently, the distribution of first-passage times
to the origin, fr (t), will be given by the mixture fr (t) = (1 −
C�)f0(t) + C�f�tr(t), with f0(t) referring to the distribution of
first-passage time to the origin for particles that do not reach
the other boundary and f�tr(t) referring to the distribution of
first-passage time to the origin for particles that reach the other
boundary (the notation will be clarified below). It is important
to remark that f (S) is a (discrete) probability mass function,
whereas ft (t) is a (continuous) probability density.
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FIG. 1. Relations between different physical processes and models, with abbreviations RW (random walk), BP (Galton-Watson branching
process), and SOC (self-organized critical phenomena) [11,34,35]. BP with geometric and binomial offspring distribution share the same critical
properties due to universality.

First, we solve the corresponding diffusion problem and
derive analytical expressions and scaling laws (Sec. II); then
we translate the results to the random-walk picture (Sec. III);
and, finally, by means of the mapping from trees to walks
[1], we obtain the properties of the associated branching
process (Sec. III also). A discussion about the most appropriate
definition of an order parameter in these systems is also
provided. Our main focus is the size distribution of all clusters
(whether they percolate or not). Given that the percolating
case was thoroughly studied in Ref. [16], we will only provide
details for the nonpercolating case.

II. FIRST-PASSAGE TIMES VIA THE
DIFFUSION EQUATION

Consider the one-dimensional diffusion equation with drift,

∂c

∂t
+ v

∂c

∂x
= D

∂2c

∂x2
, (1)

which describes the evolution of the concentration c(x,t) of
particles at position x and time t , with drift velocity v and
diffusion constant D. Both position and time are continuous
and v is positive in the direction of the x axis. We will work in
a finite interval, 0 � x � �, with � playing the role of system
size (X and L mentioned in the Introduction are dimensionless
versions of x and �). Following Redner [20], first-passage times
are most readily obtained by applying the Laplace transform
c(x,s) = ∫ ∞

0 e−st c(x,t)dt to the diffusion equation, yielding

sc(x,s) − c(x,t = 0) + vc′(x,s) = Dc′′(x,s), (2)

where the prime denotes a derivative with respect to x.

A. Absorbing boundaries

As it was shown in Ref. [16] and it will became clear later,
it is convenient to analyze first a diffusing system between
two absorbing boundaries. Then, first-passage time probability
densities f (t) are obtained from spatial concentration gradients
at the boundaries [20]. To see this, we track the rate of particle
loss from the interval 0 � x � �:

f (t) = − d

dt

∫ �

0
c(x,t)dx = −

∫ �

0
D

∂2c

∂x2
dx +

∫ �

0
v

∂c

∂x
dx

(3)

= −D
∂c

∂x

∣∣∣∣
x=�

+ D
∂c

∂x

∣∣∣∣
x=0

, (4)

where we have made use of the normalization of c(x,t) for
t = 0 and of the absorbing boundary conditions at x = 0 and

x = �:

c(x = 0,t) = c(x = �,t) = 0. (5)

Note that the terms in the above sum, Eq. (4), are not probability
densities themselves (because they are not normalized). Rather,
they are the net outflux of particles at each boundary, so that
f (t) = j�(t) + j0(t). The Laplace transform of the probability
density can therefore be written as

f (s) = j�(s) + j0(s) = −Dc′(x = �,s) + Dc′(x = 0,s).
(6)

With Dirac-δ initial condition centered at x0,

c(x,t = 0) = δ(x − x0), (7)

the solution of the Laplace-transformed diffusion equation
with two absorbing boundaries is [20]:

c(x,s) = e(x/�−u0)Pe sinh(Rx</�) sinh[R(� − x>)/�]

DR sinh(R)/�
, (8)

where Pe is a dimensionless parameter known as the Péclet
number (up to a factor of 1/2 according to convention),

Pe = �v

2D
,

u0 is the dimensionless initial position and τ a diffusion time,

u0 = x0

�
, τ = �2

D
,

and, for convenience of notation,

R =
√

P 2
e + τs, and x< = min(x,x0), x> = max(x,x0).

Note that the Péclet number gives the ratio between diffusion
time and ballistic time (with the possibility of being negative).

B. Absorption at x = 0

Using the above formalism, Redner [20] examines the
driftless case, v = 0, in full detail. For completeness, we
provide the calculation for v �= 0 in Appendix A. In summary,
the Laplace transform of the first-passage time density, f0(s),
for absorption at x = 0 can be expanded in powers of u0 as

f0(s) = 1 −
(

R

tanh R
− Pe

tanh Pe

)
u0 + O

(
u0

2
)
, (9)

where the subindex in f0(s) stresses that we are dealing with
the time to reach x = 0 (without reaching x = �). A numerical
inversion of f0(s) for different values of Pe and � is shown in
Fig. 2.
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FIG. 2. Distribution of sizes in the geometric Galton-Watson process in the three regimes: [(a) and (d)] subcritical, with Pe = −2.5; [(b)
and (e)] critical, with Pe = 0; [(c) and (f)] supercritical, with Pe = 2.5; together with theoretical predictions from the first-passage times of a
diffusion process (numerical inversion of the Laplace transform is done by the Talbot method using the routine in Ref. [36]). Panels (a), (b), and
(c) show the full distribution. Panels (d), (e), and (f) show the distribution decomposed into its percolating and nonpercolating contributions. In
the critical regime, the complete distribution f (S) shows a small bump for large sizes (b), which is much more pronounced in the supercritical
regime (c). The subcritical distribution, having no bump, can be visually confused with a critical distribution (a). System size is L = 1000 and
total number of realizations is 107. Logarithmic binning has been applied [11,37].

The first two moments can be similarly expanded as

〈t0〉 = 1

2Pe tanh Pe

(
1 + Pe tanh Pe − Pe

tanh Pe

)
τu0 + O

(
u0

2
)
, (10)

〈
t2
0

〉 = 1
2P 3

e tanh Pe

(
1
2 − Pe tanh Pe

2 + Pe

2 tanh Pe
+ P 2

e − P 2
e

tanh2 Pe

)
τ 2u0 + O

(
u0

2
)
, (11)
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FIG. 3. Rescaled mean sizes (simulations) and rescaled times
(theory) versus Péclet number for different systems sizes L. The
number of realizations in the simulations is 105 for each value of
Pe and L.

where t0 refers to the time to reach x = 0 (without reaching
x = �). A plot of 〈t0〉 as a function of Pe is shown in Fig. 3.

Note that these expressions are even in Pe. The expansions
are valid in the limit of small u0, i.e., x0 � � (more precisely,
u0Pe � 1 and u0R � 1). See Eqs. (A4), (A5), and (A6) in
Appendix A for their full derivation.

C. Critical point

The critical point corresponds to diffusion with no drift,
Pe = 0 (i.e., v = 0). Using the results of Appendix A, the exact
distribution reads

f ∗
0 (s) = sinh[(1 − u0)

√
τs]

(1 − u0) sinh
√

τs
,

where the asterisk denotes the critical point. To first order in
u0

f ∗
0 (s) = 1 −

( √
τs

tanh
√

τs
− 1

)
u0 + O

(
u0

2
)
. (12)

Figure 2 shows a plot of the numerical inverse Laplace
transform of f ∗

0 (s). The case Pe = 0 and � infinite corresponds
to τs 
 1, for which

f ∗
0 (s) = j ∗

0 (s) � 1 − u0
√

τs + O
(
u0

2
)
.

After inverting the Laplace transform (see, e.g., Eq. 4.6.23 of
Ref. [21]),

f ∗
0 (t) = j ∗

0 (t) � u0

2

√
τ

πt3
+ O

(
u0

2
)
, (13)

for Pe = 0 and t � τ = �2/D, thereby recovering the well-
known t−3/2 behavior of first passage to the origin in an infinite
system.

To lowest order in u0, the moments are given by

〈t∗0 〉 = τu0

3
= x0�

3D
, (14)

σ ∗
0 �

√
〈t2∗

0 〉 =
√

2τ 2u0

45
=

√
2x0�3

45D2
, (15)

expanding Eq. (12) for small
√

τs = �
√

s/D.

D. Absorbing boundary at x = � and splitting probability

Although already studied in Ref. [16], for completeness we
summarize the results for absorption at x = �. In the notation
of this article, we extract from Eq. (8) the expansion

j�(s) = −Dc′(x = �,s) = e(1−u0)Pe sinh(u0R)

sinh R

= ePeRu0

sinh R
+ O

(
u0

2
)
, (16)

valid for u0 � 1. For z = τs/P 2
e � 1,

j�(s) = ePePeu0

sinh Pe

[
1 −

(
−1 + Pe

tanh Pe

)
z

2

+ 1

2

(
2P 2

e

tanh2 Pe

− Pe

tanh Pe

− P 2
e − 1

)
z2

4
+ O(z3)

]

+O
(
u0

2
)
, (17)

So, to zeroth order in u0,

〈t�〉 = τ

2P 2
e

(
Pe

tanh Pe

− 1

)
+ O(u0), (18)

〈
t2
�

〉 = τ 2

4P 4
e

(
2P 2

e

tanh2 Pe

− Pe

tanh Pe

− P 2
e − 1

)
+ O(u0),

(19)

where t� refers to the time to reach x = �.
Note that the common multiplying factor in Eq. (17),

C� = j�(0) = e(1−u0)Pe sinh(u0Pe)

sinh Pe

= ePePeu0

sinh Pe

+ O
(
u0

2
)
.

(20)
gives the ratio between the outflux of particles at �, denoted
by j�(t), and the probability density f�(t) of the first-passage
time to the boundary at x = �; i.e., j�(t) = C�f�(t), so that

f�(s) = j�(s)

C�

= sinh Pe

sinh R

sinh(u0R)

sinh(u0Pe)
= R sinh Pe

Pe sinh R
+ O(u0).

C� is known as the splitting probability [20,22]. Note that
〈t�〉, 〈t2

� 〉, and f�(s) (and therefore f�(t)) are even for Pe [but
not j�(s) and C�]. For Pe = 0 (i.e., at the critical point) one has
that f ∗

� (s), to first order in u0, is the Laplace transform of the
celebrated Kolmogorov-Smirnov distribution [16,19],

f ∗
� (s) = sinh(u0

√
τs)

u0 sinh
√

τs
=

√
τs

sinh
√

τs
+ O(u0). (21)

The factor C� is also the probability that a particle is
absorbed at x = �. The right-hand side in Eq. (20) is the same
scaling law found in Refs. [23,24], as explained in the next
section. A formula for C� also appears in Refs. [16,20,22], but
without expanding in u0, therefore hiding its finite-size scaling.
The probability that a particle is instead absorbed at x = 0 is
C0 = 1 − C� � 1 (to zeroth order in u0).

Combining the results for t� with those obtained previously
for t0, we have the solution of one-dimensional diffusion
between two absorbing boundaries. In Appendix B, we show
that it displays a phase transition with finite-size scaling when
x0 � � [22].
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E. Reflecting boundary at x = �

We now consider first-passage times to x = 0, starting from
a reflecting boundary at x = �. The initial condition is most
conveniently handled by injecting into an empty interval a
single particle at x = �. Together with a zero flux condition
at this boundary for t > 0, this stipulates that

jtr�(t) =
[
vc(x,t) − D

∂c(x,t)

∂x

]
x=�

= −δ(t),

where the −δ(t) term ensures that the injection (hence minus
sign) occurs at t = 0. The term tr in the subscript denotes
transmission from the reflecting to the absorbing boundary
[20], whereas the term � refers to the boundary at x = �. In
Laplace space, this boundary condition reads

vc(x = �,s) − Dc′(x = �,s) = −1.

Note that in this case there is no dependence on u0, since the
particle is injected precisely at x = �. The absorbing boundary
condition at x = 0 remains unchanged.

The solution of the diffusion equation [Eq. (2)] with these
boundary conditions is provided in detail in Refs. [20] and [16].
The outflux at the absorbing boundary is

ftr(s) = jtr0(s) = Dc′(x = 0,s) = e−PeR

R cosh R − Pe sinh R
.

(22)

In contrast to the case of two absorbing boundaries, this
Laplace transform is not even in Pe. The exact moments of
the transmission time are given by

〈ttr〉 = τ

4P 2
e

(e2Pe − 2Pe − 1), (23)

〈
t2
tr

〉 = τ 2

8P 4
e

[
e4Pe + (1 − 6Pe)e2Pe + 2

(
P 2

e − 1
)]

, (24)

see Ref. [20]. For the critical case (Pe = 0), we recover

f ∗
tr (s) = j ∗

tr (s) = 1

cosh
√

τs

as in Ref. [16].
Since t� and ttr are independent random variables, the total

time t�tr = t� + ttr until absorption, having first reached x = �

from the origin, Laplace transforms as [16]

f�tr(s) = f�(s)ftr(s) = R2e−Pe sinh Pe

PeR sinh R cosh R − P 2
e sinh2 R

+O(u0). (25)

The inverse Laplace transforms of f�tr(s) and f ∗
�tr(s) as well as

〈t�tr〉 are shown in Figs. 2 and 3, respectively.

F. Entire diffusion problem: Moments

We are now in a position to study the entire diffusion
problem. The quantity of primary interest is the first-passage
time to x = 0, denoted tr , where the subscript r refers to
the so-called reflection mode [20]. This time is a mixture of
two times: t0 (for realizations that do not reach x = � before
absorption at x = 0) and t�tr = t� + ttr (for realizations that do
reach x = � before absorption at x = 0). The weight of each
time is given by 1 (to zeroth order in u0) and C� [from Eq. (20)],

respectively. Thus, to lowest order in u0, the expected value of
tr is

〈tr〉 = 〈t0〉 + C�(〈t�〉 + 〈ttr〉)

=
{

1

2Pe tanh Pe

(
1 + Pe tanh Pe − Pe

tanh Pe

)

+ ePePe

sinh Pe

[
1

2P 2
e

(
Pe

tanh Pe

− 1

)
+ e2Pe − 2Pe − 1

4P 2
e

]}

× τu0 + O
(
u0

2), (26)

which is plotted in Fig. 3.
For the second moment we find〈

t2
r

〉 = 〈
t2
0

〉 + C�

(〈
t2
�

〉 + 〈t2
tr〉 + 2〈t�〉〈ttr〉

)
(27)

to lowest order in u0. This result is due to the fact that
the moments of any order (with respect to the origin t = 0)
are additive in a mixture of random variables (including the
corresponding weights), but not for the sum of independent
random variables (t� and ttr), for which only the variances are
additive. The particular form of 〈t2

r 〉 can be obtained directly
from Eqs. (11), (19), and (24). To first order in u0, σ

2
r = 〈t2

r 〉.

G. Possible order parameters

Asymptotically, the first moment of tr , Eq. (26), behaves as

〈tr〉 ∼ 〈t0〉 ∼ τu0

2|Pe| = x0

|v| for Pe → −∞,

〈t∗r 〉 =
[

1

3
+ 1

(
1

6
+ 1

2

)]
τu0 = �x0

D
for Pe = 0,

〈tr〉 ∼ C�〈ttr〉 ∼ τu0e
2Pe

2Pe

= x0e
�v/D

v
for Pe → ∞,

as obtained immediately from Eqs. (10), (18), (20), and
(23). On the other hand, the order parameter considered in
Refs. [16,19], t�tr = t� + ttr , behaves as

〈t�tr〉 ∼ τ

|Pe| = 2�

|v| for Pe → −∞,

〈t∗�tr〉 =
(

1

6
+ 1

2

)
τ = 2�2

3D
for Pe = 0,

〈t�tr〉 ∼ 〈ttr〉 ∼ τe2Pe

4P 2
e

= De�v/D

v2
for Pe → ∞.

Finally, the order parameter of Refs. [23,24] behaves as

C� ∼ 2u0|Pe|e−2|Pe | = x0|v|
D

e−�|v|/D for Pe → −∞,

C∗
� = u0 = x0

�
for Pe = 0,

C� ∼ 2u0Pe = x0v

D
for Pe → ∞.

All three quantities, 〈tr〉, 〈t�tr〉, and C�, are reasonable can-
didates for order parameters—finding the order parameter of a
phase transition is often not obvious [25]: Citing J. P. Sethna,
“there is often more than one sensible choice” [26]. Typically,
one expects that in the thermodynamic limit (� → ∞) the order
parameter goes to zero for Pe < 0 and scales with a power of
� for Pe > 0 (if the order parameter is extensive). This is not
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the case for 〈tr〉 or 〈t�tr〉, and there is no simple rescaling to
bring about the desired behavior. Instead, one could redefine
the order parameters somewhat artificially as �−1 ln(|v|〈tr〉/x0)
and �−1 ln(v2〈t�tr〉/D), which below and above the critical
point behave as intensive order parameters—but they are not
well defined at the critical point. C�, meanwhile, undergoes
a transcritical bifurcation at the critical point [15], but below
the transition it goes to zero exponentially rather than as a
power law of 1/�. A drawback of all three order parameters is
the lack of an associated variance that diverges at the critical
point.

H. Finite-size scaling for the moments of the distributions

The equations in the previous subsections show that when
u0 is small, all the first-passage times (t0,t�,ttr,t�tr , and tr ) obey
finite-size scaling laws [27]. Indeed, starting with t�,

〈t�〉 = τG�1(Pe) = �2

D
G�1

(
�v

2D

)
,

〈
t2
�

〉 = τ 2G�2(Pe) = �4

D2
G�2

(
�v

2D

)
,

to zeroth order in u0, where G�1(Pe) and G�2(Pe) are scaling
functions completely determined by Eqs. (18) and (19). The
same scaling holds for ttr and t�tr (but with different scaling
functions). In contrast, from Eqs. (26) and (27),

〈tr〉 = u0τGr1(Pe) = x0�

D
Gr1

(
�v

2D

)
, (28)

〈
t2
r

〉 = u0τ
2Gr2(Pe) = x0�

3

D2
Gr2

(
�v

2D

)
, (29)

to first order in u0. The moments of t0 share the same scaling
(but with different scaling functions). For further comparison,

C� = u0Gc(Pe) = x0

�
Gc

(
�v

2D

)
,

to lowest order in u0. Note that the position of the critical point
does not shift with �: It remains at Pe = 0 (or v = 0) for finite
�.

I. Entire diffusion problem: Distribution

The Laplace transform of the probability density of the first-
passage time, tr , can be written as the weighted sum

fr (s) = (1 − C�)f0(s) + C�f�(s)ftr(s) = j0(s) + j�(s)ftr(s).

From Eqs. (A1), (16), and (22), we thus obtain

fr (s) = j0(s) + j�(s)ftr(s) = e−Peu0 sinh[(1 − u0)R]

sinh R

+ 2e−u0PeR sinh(u0R)

R sinh(2R) − 2Pe sinh2 R
,

which, at the critical point Pe = 0, reduces to

f ∗
r (s) = sinh[(1 − u0)

√
τs]

sinh
√

τs
+ 2 sinh(u0

√
τs)

sinh(2
√

τs)
.

Expanding in u0, we find [see Eqs. (A2), (16), and (22)]

fr (s) = 1 −
(

Pe + R

tanh R

)
u0

+
(

ePeR

sinh R

)(
e−PeR

R cosh R − Pe sinh R

)
u0 + O(u0

2)

= 1 −
(

Pe + R

tanh R
− 2R2

R sinh(2R) − 2Pe sinh2 R

)

× u0 + O(u0
2), (30)

valid for u0R � 1. At the critical point (Pe = 0),

f ∗
r (s) = 1 −

√
τs

tanh
√

τs
u0 +

( √
τs

sinh
√

τs

)(
1

cosh
√

τs

)
u0

+ O
(
u2

0

)
= 1 −

( √
τs

tanh
√

τs
−

√
4τs

sinh
√

4τs

)
u0 + O

(
u2

0

)
.

Plots of the inverse Laplace transforms of fr (s) and f ∗
r (s) are

shown in Fig. 2. Note that all the results presented here for
diffusion processes are valid for x0 � �.

J. Finite-size scaling for the distributions

The Laplace transforms of the probability densities of t�, ttr ,
and t�tr obey simple finite-size scaling laws (to zeroth order in
u0),

f�(s) = F̂�(τs,Pe) = F̂�

(
�2s

D
,
�v

2D

)
, (31)

from Eq. (21), where the scaling function F̂� is exactly known.
Again, ftr(s) and f�tr(s) scale in the same way as f�(s) (with
different scaling functions). Inverting the Laplace transforms,
we see that the probability densities also obey simple finite-size
scaling laws for fixed Pe,

f�(t) = 1

τ
F�

(
t

τ
,Pe

)
= D

�2
F�

(
Dt

�2
,
�v

2D

)
, (32)

with ftr(t) and f�tr(t) scaling in the same way.
In contrast, the Laplace transforms associated with tr and

t0 scale in a different way. In particular,

fr (s) = F̂r (τs,u0,Pe) = F̂r

(
�2s

D
,
x0

�
,
�v

2D

)
, (33)

to first order in u0 from Eq. (30). This is not finite-size
scaling for fixed x0, due to the dependence on u0; f0 obeys
an analogous equation. The corresponding densities obey

fr (t) = 1

τ
Fr

(
t

τ
,u0,Pe

)
= D

�2
Fr

(
Dt

�2
,
x0

�
,
�v

2D

)
, (34)

with f0(t) scaling in the same way, but with its own scaling
function. However, as the moments of tr and t0 have an extra
factor u0 in comparison with t� and ttr , this suggests that the
densities and their transforms can be written with an extra
factor u0 as well, i.e.,

fr (t) = u0

τ
Fr

(
t

τ
,Pe

)
= Dx0

�3
Fr

(
Dt

�2
,
�v

2D

)
, (35)
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where in a slight abuse of notation we have recycled the symbol
Fr , which now refers to a different scaling function. t0 obeys an
analogous equation (now truly a finite-size scaling law). The
scaling law for fr (t) is compatible with the form

fr (t) = 1

m

(m

t

)α

F

(
t

τ
,Pe

)
(36)

[and similarly for f0(t)] with the new scaling function F going
to a constant for small arguments and decaying very fast for
large arguments and with α = 3/2 and m = u0

2τ the minimum
value of t [that is, for t < m the probability density f0(t) can be
considered as zero]. This is in agreement with the power-law
behavior shown in Eq. (13). An alternative way to write the
scaling law (36) is

fr (t) = 1

m

(m

τ

)α

F̃

(
t

τ
,Pe

)
(37)

with the scaling function F̃ absorbing the power-law part with
exponent α = 3/2. For Pe = 0 this leads to the same scaling
law as in Ref. [28]. In fact, that reference gives a more direct
derivation of the scaling laws (36) and (37), but only for f0(t)
with Pe = 0.

III. BRANCHING PROCESS AND SIZE DISTRIBUTIONS

A. Diffusion and random walks

First, we recall the connection between diffusion and
random walks. Consider a random walk described by a position
X at timeT , which are both discrete and dimensionless. At each
time step T , the position X increases by one unit with proba-
bility q or decreases by one unit with probability 1 − q. The
continuum limit of the random walk is a diffusion process, with
x = Xδx and t = T δt , where δx and δt are elementary space
and time units, which tend to zero [20]. The limiting process is
described by the diffusion equation, Eq. (1), with v = (2q −
1)δx/δt and D = 2q(1 − q)δ2

x/δt . In this limit, the results ob-
tained for moments and probability densities of diffusion pro-
cesses are also valid for random walks [20]. As all the relevant
equations of the previous section can be written in terms of di-
mensionless quantities, we just need to make the substitutions

v → 2

(
q − 1

2

)
, D → 2q(1 − q), and

τ → L2

2q(1 − q)
, (38)

together with u0 = X0/L, with X0 = x0/δx and L = �/δx ; in
particular,

Pe = L(q − 1/2)

2q(1 − q)
. (39)

As an illustration, Eq. (26) becomes

〈Tr〉 = 1

4Pe

(
e3Pe

sinh Pe

− 1

tanh Pe

− 3

)
X0L

2q(1 − q)
+ O

(
u2

0

)
.

(40)

Care is required approximating the (dimensionless) probability
mass functions of random walk times T , with the probability
densities for diffusion times t , which have the dimensions
of time−1. Note that, in the former case, first-passage times

are discretized in steps of 2 (since boundaries can only be
reached in either an odd or even number of steps). Thus, the
two functions are related via

fT (T ) = 2δtft (T δt ), (41)

where fT denotes the probability mass function for the random
walk and ft the probability density for the diffusion process.
The extra factor 2 with respect a standard change of variables
comes from the discretization of T . In this way, rewriting
Eqs. (32) and (35), we obtain the form of the finite-size scaling
laws for the random walk,

fL(T ) = 4q(1 − q)

L2
F�

[
2q(1 − q)T

L2
,Pe

]

� 1

L2
F�

(
T

2L2
,Pe

)
,

with analogous expressions for fTR(T ) and fLTR(T ), while

fR(T ) = 4q(1 − q)X0

L3
Fr

[
2q(1 − q)T

L2
,Pe

]

� X0

L3
Fr

(
T

2L2
,Pe

)
,

and analogously for f0(T ). We have used q � 1/2 close to
the critical point. The scaling functions (F�, Fr , etc.) are the
same as for the diffusion process of the previous section.

B. Branching processes

We now consider the Galton-Watson branching process
associated with the random walk. The branching process starts
with one single member (also known as the root), defining
the first generation. It produces a random number of offspring
drawn from a geometric distribution, i.e., the probability of
k offspring is (1 − q)qk, k = 0,1,2, . . ., where 1 − q is the
success probability. Each of these second generation offspring
produce their own (third generation) offspring, and so on,
independently and identically. The process can be visualized
as a rooted tree. In principle, q is the only parameter of the
model, but one can introduce finite-size effects by stopping
the branching process at generation L.

The size S of the branching process, or the size of the tree
or cluster, is given by its total population (total number of
offspring plus root or, equivalently, the total number of vertices
in the tree) [6,9]. In a finite system, clusters can be classified
into two types: percolating clusters, which reach generation L,
and nonpercolating clusters, which do not. We denote the size
of each of these by the random variables Sperc (for percolating)
and Sint (internal, for nonpercolating). Overall, S is a mixture
of Sperc and Sint .

C. Mapping from branching processes to random walks

Harris’s mapping from trees to walks proceeds as follows
(for complete details see Refs. [1,16,24,29]; for a visual
explanation, see Fig. 4). A (deterministic) walker is placed at
the root of the tree and carries out a so-called depth-first search
by traversing each branch in turn to its very end, starting with
the leftmost branch. Whenever a choice of unvisited branches
presents itself, the walker traverses them in the order left to
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T

X

FIG. 4. Correspondence between trees and positive walks (excur-
sions), known as a Harris walk [1]. A walker starts at the root of the
tree (the vertex at the bottom) and follows each branch in turn to its
end, starting with the leftmost branch. If the tree is generated from
a geometric offspring distribution, then the resulting path is a simple
random walk.

right. Eventually, the walker will return to the root, having
traversed all branches. In doing so, the walker will have visited
each member of the tree twice. To define a positive walk, it
is convenient to append a final step to a “generation zero,” see
Fig. 4. In this way, one obtains a one-dimensional, positive
walk (or excursion), starting at X = 1 and ending at X = 0,
where X corresponds to the generation number as the walker
traverses the tree. The size of the tree S is then seen to be the
duration of the walk (plus one) divided by two—the division
by two takes care of the fact that each member of the tree is
visited twice.

In addition, a probability measure over the set of all positive
walks is inherited from the probability measure over the set
of rooted trees. When the tree is generated with a geometric
offspring distribution with success probability p, one obtains
the standard random walk, where X → X + 1 with probability
q = 1 − p, and X → X − 1 with probability p. In this way,
a realization of a Galton-Watson process with geometric
offspring distribution is equivalent to a realization of a random
walk that starts at X = 1 and ends at X = 0, staying positive
in between. The stipulation that a branching process cannot
exceed L generations is effected, in the random walk, by a
reflecting boundary at X = L.

D. Moments and splitting probability

One can calculate Sperc from the first-passage time of
a diffusing particle that first reaches x = � before being
absorbed at x = 0 (as in Ref. [16]). The total time is the
sum of two independent times: The first, t�, is the time to
reach x = � starting from x = x0 (and not touch x = 0),
and the second, ttr , is the time to reach x = 0 starting
from x = �, see Ref. [16]. Thus, in terms of a random
walk, Sperc = (TL + Ttr + 1)/2, where the discrete and
dimensionless times TL and Ttr are analogs of t� and ttr
for the diffusion process. Similarly, Sint is obtained from
the first-passage time to x = 0 of a diffusing particle that
does not reach x = �, denoted t0. Thus, Sint = (T0 + 1)/2,
with T0 = t0/δt . The total size S (percolating or not) can
be obtained directly from the total first-passage time tr ,
via S = (Tr + 1)/2, with Tr = tr/δt . The moments of S

are

〈S〉 = 〈Tr〉 + 1

2
� 〈tr〉

2δt

,

〈S2〉 =
〈
T 2

r

〉 + 2〈Tr〉 + 1

4
�

〈
t2
r

〉
4δ2

t

,

for L 
 1. Thus, from Eq. (40)

〈S〉 = 1

8Pe

(
e3Pe

sinh Pe

− 1

tanh Pe

− 3

)
2L + 1

2
,

where we have used the fact that, close to the critical point,
q � 0.5. In the limit of large system size, the moments of S

obey the same scaling laws as those of tr , Eqs. (28) and (29),
i.e.,

〈S〉 = L

4q(1 − q)
Gr1

[
L(q − 1/2)

2q(1 − q)

]
� LGr1[2L(q − 1/2)].

Figure 3 shows good agreement between theory and computer
simulations of the branching process for 〈S〉, 〈Sint〉, and 〈Sperc〉.
as functions of Pe.

Note that the scaling law for C�, Eq. (20), derived in the
diffusion framework, is the same as that obtained for branching
processes in Refs. [23,24]. Indeed, transcribing �,D, and v into
their discrete versions, Eq. (38), we get

2Pe = �v

D
� 4L

(
q − 1

2

)
� L(〈k〉 − 1)

to first order in q − 1/2, with 〈k〉 = q/p � 1 + 4(q − 1/2)
for the geometric distribution. Substituting the previous ex-
pression for 2Pe into Eq. (20), with x0/� = 1/L, leads to the
result of Refs. [23,24].

E. Distribution of sizes

The distributions of sizes fS(S) (for Sint,Sperc, or total S) are
related to the distributions of first-passage times in the random
walk fT (T ) and in the diffusion process ft (t) via

fS(S) = fT (2S − 1) = 2δtft [(2S − 1)δt ],

using Eq. (41). While we do not have explicit formulas for
fT (T ) and ft (t), we do have their Laplace transforms ft (s).
Thus, given a finite-size Galton-Watson branching process,
with parameters q and L, we can calculate τ, Pe, and u0 for
the equivalent diffusion process, using Eqs. (38) and (39),
and then perform the numerical inversion of the Laplace-
transformed expressions (9), (25), and (30). This yields a
nearly perfect agreement between computer simulations of
the Galton-Watson process and theory, based on diffusion
processes, as Fig. 2 illustrates.

Note from the figure that the critical case, Pe = 0, displays
a bump before the exponential decay at large sizes, which
comes from the Kolmogorov-Smirnov distribution associated
with percolating clusters. Similar bumps have been observed
in paradigmatic models of critical phenomena, such as the
Oslo sandpile model [30]. Therefore, although deviations from
criticality (Pe �= 0) in infinite systems lead to a f (S) given
by a power-law multiplied by an exponential tail (f (S) ∝
e−S/ξ /S3/2, see Ref. [9]), this parametrization is not valid
for finite-size effects at the critical point, since it does not
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reproduce the bump for large S. A much larger bump is present
in the supercritical regime.

This behavior can be taken as an instance of the so-called
dragon-king effect [31], in which events at the tail of a
distribution have a larger probability than expected from the
extrapolation of the power-law from the central part. This
would correspond to the so-called characteristic-earthquake
scenario in statistical seismology [32], although from our
results and those of Ref. [16] it seems clear that the bump
cannot be described by Gaussian-like statistics (which is
only applicable in the subcritical regime, where the bump
is negligible or very small, depending on Pe), contrary to a
statement in Ref. [32].

Finally, from Eqs. (32) and (35), the scaling laws for the
size distributions can be written as

fperc(S) = 1

L2
F�tr

(
S − 1/2

L2
,Pe

)
,

fint(S) = 1

L3
F0

(
S − 1/2

L2
,Pe

)
,

f (S) = 1

L3
Fr

(
S − 1/2

L2
,Pe

)
,

where, again, q � 1/2 close the the critical point. The scaling
functions F�, F0, and Fr are the same as for the diffusion
process.

IV. SUMMARY AND CONCLUSIONS

The Harris walk mapping establishes a direct correspon-
dence between finite-size branching processes (in which the
number of generations cannot exceed L) and one-dimensional
random walks between X = 0 and X = L. By approximating
random walks with diffusions, techniques from the latter can be
applied to branching processes, such that first-passage times
of Brownian particles with drift correspond to sizes of trees
generated by the branching process (up to a proportionality
factor).

We solved the ensuing diffusion equations, arriving, in
the limit of large system size, at exact expressions for the
Laplace transforms of the probability densities of first passage
times. The drift term is a control parameter, bringing about a
second-order phase transition as it changes sign. This transition
separates a regime in which diffusing particles (starting at
the origin) barely reach the distant boundary, from a regime
in which particles can reach the boundary. In the context of
branching processes, the transition separates subcritical and
supercritical phases. In the latter case, trees percolate (i.e.,
reach generation L) with nonzero probability. In the limit of
infinite system size, these transitions are sharp. We obtained
finite-size scaling laws for probability densities and discussed
possible choices of order parameter.

Our approach allows us to treat separately the contribution
from particles that do reach the further boundary (correspond-
ing to percolating trees) and particles that do not. In the latter
case, the distribution is governed by a power law with exponent
3/2 (except for very large and very short times), whereas in
the former case we recover the results of Ref. [16], which give
a Kolmogorov-Smirnov distribution in the critical case.

An important lesson from this study is that truncated gamma
distributions [33] (power laws multiplied by an exponential
decay term), although valid for modeling off-critical effects
in infinite systems, are not appropriate for modeling finite-
size effects in critical systems, due to the fact that they do
not reproduce a large-size bump in the distribution coming
from system-spanning clusters. Another point to bear in mind
is that the existence of finite-size scaling in the distributions
of some observable is not a guarantee that the system under
consideration is at a critical point. It could be that the system is
simply close to, but not at, the critical point in such a way that
the rescaled control parameter (Pe in our case) takes a constant
value.
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APPENDIX A

We provide details of the calculation of the outflux at x = 0
in a system with two absorbing boundaries, see Eqs. (1), (5),
and (7). From Eq. (8), we arrive at the exact expression

j0(s) = Dc′(x = 0,s) = e−Peu0 sinh[(1 − u0)R]

sinh R
, (A1)

from which

f0(s) = j0(s)

j0(s = 0)
= sinh[(1 − u0)R] sinh Pe

sinh[(1 − u0)Pe] sinh R
.

We are interested in particles starting very close to the x = 0
boundary, i.e., x0 � � and u0 � 1. Expanding Eq. (A1) to first
order in u0,

j0(s) = 1 −
(

Pe + R

tanh R

)
u0 + O

(
u0

2
)

(A2)

(in fact, we require u0Pe � 1 and u0R � 1). The properties
of the first-passage time to x = 0 will arise from the Taylor
expansion of j0(s) around s = 0. If we write R = Pe

√
1 + z

with z = τs/P 2
e , then, to second order in z,

j0(s) = 1 −
(

Pe + Pe

tanh Pe

)
u0 − Pe

2 tanh Pe

(
1 + Pe tanh Pe − Pe

tanh Pe

)
u0z

− Pe

2 tanh Pe

(
−1

2
+ Pe tanh Pe

2
− Pe

2 tanh Pe

− P 2
e + P 2

e

tanh2 Pe

)
u0z

2

2
+ O(z3)u0 + O

(
u0

2
)
. (A3)
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Since j (s) is the moment generating function for first passage times, i.e., j (s) = C[1 − 〈t〉s + 〈t2〉s2/2 + O(s3)], for some
normalization constant C, we read off from the above expansion

〈t0〉 = 1

2Pe tanh Pe

(
1 + Pe tanh Pe − Pe

tanh Pe

)
τu0 + O

(
u0

2
)
, (A4)

〈
t2
0

〉 = 1

2P 3
e tanh Pe

(
1

2
− Pe tanh Pe

2
+ Pe

2 tanh Pe

+ P 2
e − P 2

e

tanh2 Pe

)
τ 2u0 + O

(
u0

2
)
, (A5)

where the subscript 0 in t denotes first-passage to the boundary
at x = 0. To first order in u0, the variance coincides with the
second moment, i.e., σ 2

0 = 〈t2
0 〉 − 〈t0〉2 � 〈t2

0 〉.
The zeroth-order term in s [i.e., the constant C = C0 =

j0(s = 0)] is only one in the limit u0 → 0. To first order in u0,
the coefficients in the expansion of j0(s) yield the moments
of t0. Using Eq. (A2), the Laplace-transformed probability
density is

f0(s) = j0(s)

j0(s = 0)
= 1 −

(
R

tanh R
− Pe

tanh Pe

)
u0 + O

(
u0

2
)

(A6)
to first order in u0.

APPENDIX B

The problem of one-dimensional diffusion between two
absorbing boundaries (analyzed in Ref. [22]) displays a phase
transition in the same way as diffusion between absorbing and
reflecting boundaries. The calculation of first-passage times is
analogous to that of the absorbing-reflecting system but with
the contribution from ttr excluded.

The exact Laplace-transformed probability density for t0�,
the first-passage time to either boundary, reads

f0�(s) = e−Peu0 sinh[(1 − u0)R]

sinh R
+ e(1−u0)Pe sinh(u0R)

sinh R
,

which, at the critical point (Pe = 0), reduces to

f ∗
0�(s) = sinh[(1 − u0)

√
τs] + sinh(u0

√
τs)

sinh
√

τs
.

These expressions may be expanded in u0 as

f0�(s) = j0(s) + j�(s) = 1 − u0

(
Pe + R

tanh R
− ePeR

sinh R

)

+O
(
u2

0

)
,

and, at the critical point,

f ∗
0�(s) = 1 − u0

( √
τs

tanh
√

τs
−

√
τs

sinh
√

τs

)
+ O

(
u2

0

)
,

in which the Kolmogorov-Smirnov distribution again appears
(corresponding to particles that reach x = �). Note that t0�

scales in the same way as tr and t0 (but with different scaling
functions). Thus, the scaling laws in the core of the paper also
apply here (but with different scaling functions).

To first order in u0, 〈t0�〉 = 〈t0〉 + C�〈t�〉, where C� is the
same as in the absorbing-reflecting system. Thus, the first
moment is given by

〈t0�〉 = τu0

2

(
1 + 1

tanh Pe

− 1

Pe

)
,

which is the expansion to first order in u0 of Eq. 2.3.10 in
Ref. [20] or, equivalently, Eq. (6) in Ref. [22].
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